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The Climate Likely to™ ;‘
Do To Us? ‘,‘,,

im

‘»
; ‘Q g
4 A‘Focus {1
/ Grasslands
! )
‘ |

. B
> .. '
.'-" » l‘
: y -
:t :f" -
-0 . 1 3 '
e R | , !
2 v I L g
gy A
' ) ‘ol Y o \
! . ). '."f - /-
b 'y fr. I
L ) N
N .
y .

Roland Schulze, Professor Emeritus of Hydrology
Centre for Water Resources Research, University of KZN, Pietermaritzburg




What are we doing
to our Climate?
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The Result...1

Considerable changes
have occurred since the
Industrial revolution

CO, radiative forcing has
Increased by ~ 20% in
past 10 years

IPCC Figure SPM-1



Result 2: The Enhanced
Greenhouse Effect

Solar radiation

Longwave
radiation
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Carbbon Dioxide Concentrations in
the Atmosphere are Increasing
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The Effects Have leen Known for a Long Time

Svante ARRHENIUS

1859 born 15 February
1884 PhD in Physics 4t

4
DT~

How right he was,
and yet so wrong!

Class

1896
calcu

CO2t

-Irst scientist to
ate how changes in

nrough burning

fossil fuels could alter
surface temperatures
through the Greenhouse
Effect

1903 Nobel Prize for
Chemistry



How much are we Emitting
into the Atmosphere?

The Global Carbon Budget

CO. emissions (GtCOyyr)
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Result 3: Globally, 2014 was the

Hottest Year Ever

Anomaly(°C) relative to 20" Century Average
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... and it Continues: January - June 2015
Hotggst Evgr qp . cqm (NOAA, 18 July 2015)

Global Land-Ocean Temperature Index
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So, What Are Some Consequences ...
General{

Break-up of

Arctvc

} ; vi‘s.

: -glaciqi' Melt




Consequences? And with that, ...
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2 June 2015, 22:30

India’s Current Heat Wave, o

”“.,.b

2 June 2015, Over 2300 killed

“Let us not fool ovurselves that there is no
connection ... it is climate change”
H. Vardhan, India’s Minister of Earth Sciences
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More Severe Storms...
Signs of Climate Change...???

Durban, 11 December 2009
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Consequences? More Frequent Fires

- Cape Town Fires,

27 August 2014 3
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And, what Is our climate
liIkely to do to us?

To answer that, we first need
to do scenario projections
into the future...

So, Jjust a little bit of science!



Scenarios into the Future...up to 2013
SRES Scenario Storylines Considered by the IPCC

(after Nakiéenovi¢ et al., 2000; graphic from IPCC-TGICA, 2007)

Economic
&

A1

Al: A world of rapid economic
growth and rapid introductions
of new and more efficient
technologies

A2. A very heterogeneous
world with an emphasis on
family values and local
traditions

B1: A world of
dematerialization and
introduction of clean
technologies

B2 A world of emphasis on
local solutions to economic and
environmental sustainability




Scenarios into the Future
Since 2013, RCPs, Generated by

Figure 21.1: Global net human-caused CO; emissions in the
Representative Concentration Pathways

Billian metric tons of CO, per year
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To Apply GCMss, they
Require Downscaling /#8%#
to l.‘al Scales i

Impact

X S i Models

Global Climate N"m}
Models (GCMs) . 5NB _

(e.g. HadCM3, & __
ECHAMS5, ~200 km)  Regional Climc
Models (RCMs) o

statistical downscc%g ookl
Hewitson, 2010 (~25 km)



../../../work/reviews/Singapore/Models/Lothar.html

The Local Scale at which we

Zones

QUINARY CATCHMENT SCALE

QC V11A Qcviic QC V11D
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o Quaternary Catchment Outlet
l:| External Quaternary Catchment

Internal Quaternary Catchment

Schulze & Horan, 2010



The Downscaling Dilemma: Raster vs Station

« For GCMs downscaled to ~ 50 km (1/2 degree), 499 raster points cover SA

* But, there are 5 838 Quinaries covering SA

*].e. on average 11.6 Quinaries per raster point

* But, Quinaries have different altitudes, temperatures, rainfalls

* How do you reconcile, adjust, correct, especially in mountainous, runoff

producing regions?

- WE NEED TO ‘BIAS CORRECT’

Distribution of Stations Used in Downscaling Climate Change Projections
Precipitation
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Bias Correcting for Topography

: | °C
Correction of Tmax -
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Monthly Precipitation Correction Correction
Quinary vs Raster Factor
January -0
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What Confidence do we have in Climate
Projections into the Future?

_—
Public Perception : Anthropogenic
Technology Population e s
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So, how Confident are we that Downscaled GCMs will
give Credible Results on Projected Future Conditions™

Durban Climate Change Strategy
Verification of Monthly Potential
Evaporation, Quinary 4713

Durban Climate Change Strategy
Verification of Mean Annual

Precipitation
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Durban Climate Change Strategy
Verification of Standard

Deviation of Annual Streamflows
150

y = 0.5259x - 11.426 L 4
R? = 0.4505 *® 8
*
100 *
* (3
* »
»
50 * e
** ¢
0 . : . . .
0 50 100 150 200 250

SD of Annual Streamflows (mm) Historical 1971-1990




We are More Confident in Some Outputs than
in Others, and More Confident in Some Areas
than in Others

Durban Climate Change Strategy oo
cmw:oog:bm?:er:f’ms ngay Cl =CV (%) of Ratio
S ik Changes of All GCMs Used
b Mean Annual
st on Accumulated Streamflow
Durban Climate Change Strategy - "f'd"‘
Confidence Index (4 eveiowns Boundsry
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- Mean Annual Streamflow -
Mean Annual Rainfall | .o
-n TR :d:gg
Interpretation? i
Implications? |! | Somice,
Schulze & Davis, DCCS (2014) ..




And, what Is our climate
liIkely to do to us In
South Africa?
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What are the consequences?

Rate of Change/Decade Increasing Over Time
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Future Year-to-Year Vanability will
Change...the Case of Projected Rainfall

and Temperature over SA ..o
Changes iin the Standard ?v'r'at'v'on of Annual Rainfall
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How are SA’s Climate Zones Projected to Change?

Koppen Climate Zones: Dominant Zone from Multiple GCMs Koppen: Frojectad meunant Giimate Zona
Intermediate Future

Present 1971 - 1990
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Let’'s Consider A High
Value Export Crop

Example: Table Grapes
(Schulze 2014)




Case Study

Objective Nature Management
0 / Long Term Practices
& " (Establishment, row orientation,
SOW & vine spacing,
Wma’te trellising/training/pruning
practices

Short Term Practices
(Irrigation techniques,
fertilization, canopy
management)

Harvest Criteria

Colour and Sugar &

Flavour Potassium
Accumulation

\

Pre- vs Post Véraison
Optimal vs Too Cold/Too Hot

Organic Acid
Formation




Comparative Analysis, Photosynthetic Analysis
Future vs Present Climatic Conditions

Grapevine Photosynthetic Activity
% Optimum Temperature
25 - 30 °C, from 09:00 - 15:00
Pre- vs Post-Vérasion, Future vs Present Climate
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Adaptation strategies

Wine grape cultivars
Red wine grape cultivars t
tolerant towards climate c

nat will be more
nange include Cabernet

Sauvignon, Pinotage anc
cultivars that will be
climate change are

Ruby. Red wine grape
towards

Oosthuizen and Louw, 2014




Adaptation strategies

White wine grape cultivars that will be more tolerant

towards climate change include Chenin Blanc and
Colombard. White wine grape cultivars that will be
towards climate change include




Let’s Now Focus on
Climate Change
Grasslands

Examples: 1. Kikuyu Yields
| 2. Fodder Banking
3. Grassland Yields
4. Sub-Biome Types
5. Short vs. Tall Grasslands

6. Forage Quality
/. Fire D |




1. How is CC Projected to Impact on
KIKUYU Yields

Smith’s (2006) Rule-Based Model of

Kikuyu Yield (Pennisetum clandestinum
as expressed in equation form (Schulze, 2011) p

Yiik = Peom - Psu - D/ 100

where Y, = kikuyu yield (t/ha/season)
P..m = €ffective rainfall fraction for October to March
=0.60 + 0.00125(P, - 480) for 400 <P, < 720
0.90 - 0.00063(P,, - 720) for 720 <P, < 960
0.75 - 0.00125(P,- 960) for 960 < P, <1040
=0.65 - 0.00063(P,, - 1040) for 1040< P, <1300
with P,, =accumulated rainfall (mm) for October to March
and D, =dry matter yield index for kikuyu
=1.8 + 0.0010(H, - 1000) for 1000 < H, < 1700
=2.5+ 0.0010(H, - 1700) for 1700 < H,, < 2200
=2.0 + 0.0008(H, - 2200) for 2200 < H, < 2800
where H, = accumulated heat units (base 10°C) in degree
days for October to March




Kikuyw Yields Under
Historical Climatic Conditions

(Schulze, 2011)
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Kikuyu Yields into the Future

(Schulze, 2011)

Results from Multiple Climate Models
Ratios of WeVd Changes into the Future
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... and, how confident are we of the results7
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2. Fodder Banking in Future Climates

A fodder bank (or fodder reserve) is

e a store of conserved fodder

» in the form of natural herbage (e.g. Eragrostis curvula), which is

» deliberately accumulated, above the normal seasonal requirements,

* In ayear of above average grassland yields,

« to make good the shortage when feed availability unpredictably falls
below expectation because of a
- drought year, or worse still
- consecutive years of drought (Jones, 1983; Mohamed-Saleem et al., 1987).

Q: What is an “above average” year? a “drought” year?
A: When herbage yields are 1 standard deviation
above or below average yields!

Q: What is the minimum amount to be banked?
A: = 1 standard deviation of average yield

Q: What is the ideal fodder bank size?

A: = 2 standard deviations of average yields



where Ye

Peum

& with Py,
= and De

where Hg,

Yec = Peon . Pou . Dec /100

Eragrostis curvula yield (t/ha/season)

effective rainfall fraction for October to March

0.60+0.00125  (Ps, - 480) for 400 <Py, <720
0.90 -0.00063  (Py, - 720)for 720 <Py <960
0.75 -0.00125  (Py, - 960) for 960 < Py, <1040
0.65 -0. (Psy - 1040) for 1040 < Py, <1300
accumulated rgigfall (mm) for October to March

dry matter 0 index for Eragrostis curvula

16+0.0

-1000) for1000 < Hy,
2.0+0.0020 (H, - 1400) for1400 < Hg,
2.8 -0.0010 (H, - 1800) for1800 < Hy,
24 -0.0020 (H, - 2200) for2200 < Hg,
accumulated heat units (base 10 °C) for October to Marcl

M Koppen-Geiger Climate Zones Based
on the Historical Chimare

Por Quinary Catchmant

<1400
<1800
<2200
<2800

with lower limit of 1000 and an upper limit of 2800 °days.

Steps in Devel!apmg a Fodder E anlkmg Model for South Africa
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Steps in Developing a Fodder Banking Model for South

Africa, Now and into the Future
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So much for the Science ...

But, What Does it Imply?
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4. How Will Areas Suitable for Sub-Biome
Grassland Types Chanqe into the Future?

Relating Muscina & Rutherford (2006) Sub-Biome Types to Koppen Geiger Climate Zones

I short: Dry Highveld
| Short to Tall: Drakensberg, Mesic & Sub-Escarpment

Medium to Tall: Coastal

- Tall: Savanna

Present Climate

(Scott-Shaw & Schulze, 2014)
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5. How Will Short vs. Tall Grassland
Types Change Into The Future?

Relationships in KwaZulu-Natal Using The Képpen Geiger Climate Zones
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6. How Is Forage Quality Projected To
Chaﬂge ’ﬂm The F"mre (Schulze et al., 1995)

CARBON : NITROGEN RATIOS

Percentage Change from the Present
to a Future Climate

C:N RATIO
(% CHANGE)

CO. 360-560 ppmv
T :2°Cat30°S




7. Could Fire Danger Change into the Future?

CLIMATE BASED FIRE DANGER RATING: Angstrém Index
Fire Occurrence Very Likely (Days)

Modified by Wetness Modified by Fuel
of Vegetation Index Load Index

Modified by Dryness
of Soil Index

MODIFIED FIRE DANGER RATING: Fuel Load Index,
Based on Above-Ground and Surface Biomass Charactenstics

Davs Verv Likelv

CLIMATE BASED FIRE DANGER RATING: Angstrom Index
Fire Occurrence Unfavourable (Days June - August)

CLIMATE BASED FIRE DANGER RATING: Angstrom Index
Fire Occurrence Favourable (Days March - May)

CLIMATE BASED FIRE DANGER RATING: Angstrom Index
Fire Occurrence Unlikely (Days December - February)




NOTE !I' CC Will be Superimposed Over
Often Already Damaged Natural Capital

D Common FarmmPractlces




FACT!! Large Tracts of SA are Now Already
Physically Degraded, & Livestock Practices
(and Politics) Have Played Their Role
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We Have To Consider
Other Secondary
Impacts,

e.g. Human Comfort



Thom's Discomfort Index
Annual Average
Present (1971 - 1990)
Uncomfortable - Too Hot and Humid

Thom's Discomfort Index
Annual Average
Intermediate Future (2046 - 2065)
Uncomfortable - Too Hot and Humid

CeeM2.1(T47)

Thom's Discomfort Index
Annual Average
Distant Future (2081 - 2100)
Uncomfortable - Too Hot and Humid




And, looking
more closely...

Changes in Thom's Human Discomfort Index
Ballito, Quinary U30E3

Number of Uncomfortable Days
Average of Multiple GCMs; Mid-Day
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Repercussions: Labour, Tourism, School Holidays, Energy



Where to Now?

What we should NOT do!




We Cannot Stick our Head in the Sand
and Pretend There is No Crisis




Neither can we assume that divine
intervention help us this time aroundV




Where to Now?

A Point to Ponder!




Planetary Boundaries Is Humani ty St i a
A safe operating space for humanity “S .
afe Operating
Climate Space JJ?

Steffen et al. (2015) in Science

* Four of nine planetary
boundaries (incl. CC) are
already beyond the

i “'safe” space
« We are now on a4°C

trajectory of warming
« Can the planet support
+10 B people post 20507
* Or will we have overshot
the Earth’s bio-capacity?
with large losses to
= o ity (s 10 biodiversity, wetlands,

= By not e uenies croplands, terrestrial C
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