What Are We Doing To Our Climate? And What Is The Climate Likely to Do To Us?

A Focus on Grasslands

Roland Schulze, Professor Emeritus of Hydrology Centre for Water Resources Research, University of KZN, Pietermaritzburg

What are we doing to our Climate?

We are Emitting Vast Amounts of Greenhouse Gases

into the Atmosphere re.

The Result...1

Considerable changes have occurred since the industrial revolution

CO₂ radiative forcing has increased by ~ 20% in past 10 years

IPCC Figure SPM-1

Result 2: The Enhanced Greenhouse Effect Solar radiation

Carbon Dioxide Concentrations in the Atmosphere are Increasing

NOAA, 7 May 2015

The Effects Have Been Known for a Long Time

How right he was, and yet so wrong!

Svante ARRHENIUS 1859 born 15 February 1884 PhD in Physics 4th Class 1896 First scientist to calculate how changes in **CO**₂ through burning fossil fuels could alter surface temperatures through the Greenhouse Effect 1903 Nobel Prize for **Chemistry**

How much are we Emitting into the Atmosphere? The Global Carbon Budget

Result 3: Globally, 2014 was the Hottest Year Ever

So, What Are Some Consequences ... General

Consequences? And with that, ...

Consequences? And with that, ...

Consequences? More Extreme

2 June 2015, 22:30 India's Current Heat Wave, 2 June 2015, Over 2300 killed

"Let us not fool ourselves that there is no connection ... it is climate change" H. Vardhan, India's Minister of Earth Sciences

Consequences? Old Trees Most Likely to Die

More Severe Storms... Signs of Climate Change...??? Durban, 11 December 2009

Consequences? More Frequent Fires

And, what is our climate likely to do to us?

To answer that, we first need to do scenario projections into the future... So, just a little bit of science!

Scenarios into the Future...up to 2013 SRES Scenario Storylines Considered by the IPCC

(after Nakićenović et al., 2000; graphic from IPCC-TGICA, 2007)

A1: A world of rapid economic growth and rapid introductions of new and more efficient technologies

A2: A very heterogeneous world with an emphasis on family values and local traditions

B1: A world of dematerialization and introduction of clean technologies

B2 A world of emphasis on local solutions to economic and environmental sustainability

To Apply GCMs, they Require Downscaling to Local Scales

Global Climate Models (GCMs) (e.g. HadCM3, ECHAM5, ~200 km)

Hewitson, 2010

Regional Climate Models (RCMs) or statistical downscaling (~25 km)

Impact Models (~5 km)

The Downscaling Dilemma: Raster vs Station

- For GCMs downscaled to ~ 50 km (1/2 degree), 499 raster points cover SA
 - * But, there are 5 838 Quinaries covering SA
 - * i.e. on average 11.6 Quinaries per raster point
 - * But, Quinaries have different altitudes, temperatures, rainfalls
 - * How do you reconcile, adjust, correct, especially in mountainous, runoff producing regions?

• WE NEED TO 'BIAS CORRECT'

Bias Correcting for Topography

What Confidence do we have in Climate Projections into the Future?

So, how Confident are we that Downscaled GCMs will give Credible Results on Projected Future Conditions?

We are More Confident in Some Outputs than in Others, and More Confident in Some Areas than in Others

Mean Annual Rainfall

Interpretation? Implications?

Schulze & Davis, DCCS (2014)

CI = CV (%) of Ratio Changes of All GCMs Used

Mean Annual Accumulated Streamflow

And, what is our climate likely to do to us in South Africa?

Changes in Mean Annual Temperature are Projected to be Significant What are the consequences?

Rate of Change/Decade Increasing Over Time

Future Year-to-Year Variability will Change...the Case of Projected Rainfall and Temperature over SA (Schulze, 2011)

Changes in the Standard Deviation of Annual Rainfall

Changes in the Standard Deviation of Annual Temperature

and what are the agric/health/DRM consequences?

How are SA's Climate Zones Projected to Change?

Let's Consider A High Value Export Crop

Example: Table Grapes (Schulze 2014)

Comparative Analysis, Photosynthetic Analysis Future vs Present Climatic Conditions

Adaptation strategies Olifants West

Wine grape cultivars

Red wine grape cultivars that will be more tolerant towards climate change include Cabernet Sauvignon, Pinotage and Ruby. Red wine grape cultivars that will be most vulnerable towards climate change are Shiraz and Merlot.

Oosthuizen and Louw, 2014

Adaptation strategies Olifants West

<u>White wine</u> grape cultivars that will be more tolerant towards climate change include Chenin Blanc and Colombard. White wine grape cultivars that will be most vulnerable towards climate change include Sauvignon Blanc and Chardonnay.

Oosthuizen and Louw, 2014

Let's Now Focus on **Climate Change** Grasslands Examples: 1. Kikuyu Yields 2. Fodder Banking 3. Grassland Yields 4. Sub-Biome Types 5. Short vs. Tall Grasslands 6. Forage Quality 7. Fire Danger

1. How is CC Projected to Impact on KIKUYU Yields

Smith's (2006) Rule-Based Model of Kikuyu Yield (Pennisetum clandestinum) as expressed in equation form (Schulze, 2011)

 $Y_{kik} = P_{eom} \cdot P_{su} \cdot D_{kik} / 100$

where Y_{ki} = kikuyu yield (t/ha/season) P_{eom} = effective rainfall fraction for October to March $= 0.60 + 0.00125(P_{su} - 480)$ for $400 < P_{su} < 720$ $= 0.90 - 0.00063(P_{su} - 720)$ for $720 < P_{su} < 960$ $= 0.75 - 0.00125(P_{su} - 960)$ for $960 < P_{su} < 1040$ $= 0.65 - 0.00063(P_{su} - 1040)$ for 1040< P_{su} <1300 with P_{su} = accumulated rainfall (mm) for October to March and D_{kik} = dry matter yield index for kikuyu $= 1.8 + 0.0010(H_{su} - 1000)$ for $1000 < H_{su} < 1700$ $= 2.5 + 0.0010(H_{su} - 1700)$ for $1700 < H_{su} < 2200$ $= 2.0 + 0.0008(H_{su} - 2200)$ for $2200 < H_{su} < 2800$ where H_{su} = accumulated heat units (base 10°C) in degree days for October to March

Kikuyu Yields Under Historical Climatic Conditions

(Schulze, 2011)

Mean Rainfed Kikuyu Yield

Lowest Yield in 10 Years

Year-to-Year Variability

Highest Yield in 10 Years

Kikuyu Yields into the Future (Schulze, 2011)

Results from Multiple Climate Models Ratios of Yield Changes into the Future

... and, how confident are we of the results?

2. Fodder Banking in Future Climates A fodder bank (or fodder reserve) is

- a store of conserved fodder
- in the form of natural herbage (e.g. *Eragrostis curvula)*, which is
- deliberately accumulated, above the normal seasonal requirements,
- in a year of **above average grassland yields**,
- to make good the shortage when feed availability unpredictably falls below expectation because of a
 - drought year, or worse still
 - consecutive years of drought (Jones, 1983; Mohamed-Saleem *et al.*, 1987).
- **Q:** What is an "above average" year? a "drought" year?
- A: When herbage yields are 1 standard deviation above or below average yields!
- **Q:** What is the minimum amount to be banked?
- A: ≡ 1 standard deviation of average yield
- **Q:** What is the ideal fodder bank size?
- A: \equiv 2 standard deviations of average yields

Steps in Developing a Fodder Banking Model for South Africa

1971 - 1990

2046 - 2065

SHIFTS

Schulze & Davis, LTAS (2013)

Steps in Developing a Fodder Banking Model for South Africa, Now and into the Future

So much for the Science ...

Schulze & Davis, LTAS (2013**)**

But, What Does it Imply?

4. How Will Areas Suitable for Sub-Biome **Grassland Types Change into the Future?** Relating Muscina & Rutherford (2006) Sub-Biome Types to Köppen Geiger Climate Zones

5. How Will Short vs. Tall Grassland Types Change Into The Future?

Relationships in KwaZulu-Natal Using The Köppen Geiger Climate Zones

6. How Is Forage Quality Projected To Change Into The Future (Schulze et al., 1995)

7. Could Fire Danger Change into the Future?

CLIMATE BASED FIRE DANGER RATING: Ångström Index Fire Occurrence Very Likely (Days)

NOTE !! CC Will be Superimposed Over Often Already Damaged Natural Capital by Common Farming Practices Extensive annual grassland burning

...and severe overgrazing

FACT!! Large Tracts of SA are Now Already Physically Degraded, & Livestock Practices (and Politics) Have Played Their Role

We Have To Consider **Other Secondary** Impacts, e.g. Human Comfort

And, looking more closely...

Changes in Thom's Human Discomfort Index Ballito, Quinary U30E3 Number of Uncomfortable Days Average of Multiple GCMs; Mid-Day

Repercussions: Labour, Tourism, School Holidays, Energy

Where to Now?

What we should NOT do!

We Cannot Stick our Head in the Sand and Pretend There is No Crisis

Neither can we assume that divine intervention help us this time around!

Where to Now?

A Point to Ponder!

Planetary Boundaries A safe operating space for humanity

Is Humanity Still in a "Safe Operating Space"?

Steffen et al. (2015) in Science

- Four of nine planetary boundaries (incl. CC) are already beyond the "safe" space
- We are now on a 4°C trajectory of warming
- Can the planet support +10 B people post 2050?
- Or will we have overshot the Earth's bio-capacity? with large losses to biodiversity, wetlands, croplands, terrestrial C stores?

Handbook on Adaptation to Climate Change for Farmers, Officials & Others in the Agriculture Sector within

South Africa

Background to Agriculture and Climate Change Agriculture's Natural Capital Climate Change Impacts **Crops & Climate Change Pastures & Climate Change Horticultural Fruit Crops & Climate Change** Livestock & Climate Change **Tree Crop Systems & Climate Change** Water for Agriculture and Climate Change **Irrigation & Climate Change** Hazards & Climate Change **Climate Change Adaptation Strategies Overarching Adaptation Perspectives Emerging Challenges** Where to From Here?